100 ft

Solve the following word problem. Show your all your work and round to 2 decimal places.

Katie sees an airplane in the sky from her spot on the ground. The angle of elevation from Katie to the airplane is 35°. If she steps back 100 feet, the new angle of elevation is 15°.



$$tan 15^{\circ} = y tan 35^{\circ}$$
 $100 + y$ 

 $y \tan 350 = \tan 15\% (100 + y)$ y tan 35° = 100 tan 15+ y tan 15° -y tan 15°

ytan 35°-ytan 15°= 100tan 15° y (tan 35° -tan 15°)=100 tan 15° tan 35°-tan 15° tan 35°-tan 15°



b.) If Katie is 5.75 feet tall, how far off the ground is the airplane?







tan 
$$a0^{\circ} = y + an 50^{\circ}$$
 (fan  $a0$ )(y +300) = y +an  $50^{\circ}$   
y+300 y +an  $a0^{\circ}$ +300+4n  $a0^{\circ}$  = y +an  $a0^{\circ}$   
-y +an  $a0^{\circ}$  -y +an  $a0^{\circ}$ 

$$\frac{300 \tan 20^{\circ}}{\tan 50^{\circ}-\tan 20^{\circ}}$$

b.) If Frankie is 6 feet tall, how far off the ground is the UFO?



b.) If Brendan is 6.25 feet tall, how far off the ground is the kite?

tan 
$$65^{\circ} = X_{-}$$
133,32.
$$X = 285.91$$
+6.25

tan65°-tan35° tan 65°-tan 35°







$$fan 10^{\circ})(150+y) = y tan 45^{\circ}$$
  
 $150 tan 10^{\circ} + y tan 10^{\circ} = y tan 45^{\circ}$   
 $-y tan 10^{\circ} - y tan 10^{\circ}$   
 $150 tan 10^{\circ} = y(tan 45^{\circ} - tan 10^{\circ})$   
 $fan 45^{\circ} - tan 10^{\circ}$ 

b.) If John is 5.5 feet tall, how far off the ground is the eagle?