Name	Keu	
	J	

ALGEBRA 2 W/ TRIGONOMETRY - FINAL EXAM Textbook Chapters 4, 5, 6, 9, 10

 Chapter 4 Graph Exponential Growth Functions (4.1) Graph Exponential Decay Functions (4.2) Use Functions Involving e (4.3) Evaluate Logarithms and Graph Logarithmic Functions (4.4) Apply Properties of Logarithms (4.5) Solve Exponential and Logarithmic Equations (4.6) 	 Chapter 5 Graph Simple Rational Functions (5.2) Graph General Rational Functions (5.3) Multiply and Divide Rational Expressions (5.4) Add and Subtract Rational Expressions (5.5) Solve Rational Equations (5.6)
 Chapter 6 Use Combinations and the Binomial Theorem (6.1) Mean, Median, Mode, and Range (SR31) Use Normal Distribution (6.3) Select and Draw Conclusions from Samples (6.4) 	Chapter 9 Use Trigonometry with Right Triangles (9.1) Define General Angles and Use Radian Measure (9.2) Evaluate Trigonometric Functions of Any Angle (9.3) Evaluate Inverse Trigonometric Functions (9.4)
Chapter 10 Graph Sine, Cosine, and Tangent Functions (10.1) Translate and Reflect Trigonometric Graphs (10.2) Verify Trigonometric Identities (10.3)	

A 1-page handwritten reference sheet is allowed on the final exam.

ALGEBRA 2 W/ TRIGONOMETRY – FINAL EXAM REVIEW Chapter 4 Review

Graph. State the horizontal asymptote, domain and range.

 $1. \quad f(x) = \frac{1}{2} \cdot 2^x$

Horizontal Asymptote: <u>**y** = 0</u>

2. $f(x) = -2 \cdot 3^{x+1} + 2$

Horizontal Asymptote: 42

Domain: Range: 46

 $f(x) = 2\left(\frac{2}{3}\right)^{3}$

Horizontal Asymptote: <u>**y**=0</u>

Domain: ___

4. $f(x) = \frac{1}{2} \left(\frac{3}{4}\right)^{x+1} - 2$

Domain:

5. On your birthday, you receive a cell phone for \$300. The value of the cell phone decreases by 20% each year. What will the value be 4 years from now?

$$Y = 300 (1 - .2)^4$$

= $(300 (.8)^4$
= $(300 (.8)^4)$

6. A new motorboat costs \$6000. The value of the boat decreases by 15% each year. What is the value of the boat after 3 years?

$$y = 6000(1-.15)^3$$

= $6000(.85)^3$
= $($3,684.75)$

7. You deposit \$1650 in an account that pays 4.275% annual interest. What is the balance after 5 years if compounded:

(a) monthly
$$A = 1650 \left(1 + \frac{04275}{12}\right)^{12.5}$$
(\$2042.44)

(b) daily
$$A = 1650 \left(1 + \frac{.04275}{365}\right)^{365.5}$$

In 2 years, you want to have \$5000 in your savings
account. Find the amount that you should deposit if the
account pays 3% annual interest, compounded monthly.

$$5000 = x (1 + \frac{03}{12})^{12.00}$$

$$5000 = x (1.06176)$$

$$1.06176$$

$$1.06176$$

$$44709.18$$

9. You deposit \$300 into a savings account that pays 5% annual interest. If the account compounds daily, how long will it take for the account to reach \$600, to the nearest year?

$$A = 300 (1 + \frac{.05}{365})$$

100k @ table of valves

(14 years)

Simplify the expression.

10. $\log_5 625^x$

$$\log_2\left(\frac{1}{4}\right)^x$$

$$\log_2\left(\frac{1}{4}\right)^x = CX$$

12. $\log_4 256^{2x}$

$$\frac{\log 100^{4x}}{\log 10^{10}} = 8x$$

Expand the expression.

$$\ln 4 + \ln y^{2}$$
 $\ln 4 + 2 \ln y$

$$\begin{array}{c}
\log_{4}(16x^{8}y^{6}) \\
\log_{4}(6 + \log_{4}x^{8} + \log_{4}y^{6}) \\
2 + 8\log_{4}x + 6\log_{4}y
\end{array}$$

 $\log_{\frac{1}{2}} \sqrt{xy} = \log_{\frac{1}{2}} (xy)^{\frac{1}{2}} = \log_{\frac{1}{2}} x^{\frac{1}{2}} y^{\frac{1}{2}}$ 17. $\ln xy$

 $\log_3 \frac{6y^4}{x^8}$

$$109_36y^4 - 109_3x^8$$

 $109_36 + 109_3y^4 - 109_3x^8$
 $109_36 + 4109_3y - 8109_3x$

$$\ln \frac{\sqrt[3]{x}}{y^2} = \ln \frac{x}{y}$$

$$\ln x^3 - \ln y$$

$$\ln x - \lambda \ln y$$

Condense the expression. 20. $\log_6 5 + 3\log_6 2$ 10965+109623 109.5+109.8 (109.40)

21. $\ln 4xy^2 - 2\ln x^2y$ $\ln 4xy^2 - \ln (x^2y)$ In 4x4 = In 4x4

 $\log_6 2 + \log_6 18$

109,36 = (2

23. $\ln xy + \ln xy^2 - \ln x^2 y$

Solve the equation.

 $24. \ 4^{2x+4} = 16^{3x-6}$

$$4.4 = 10$$

$$= 4^{2}(3x-6)$$

2x+4 = 6x-12-2x+12--2x+12-

$$25. \left(\frac{1}{4}\right)^{x+8} = \left(\frac{1}{2}\right)^{x^2+1}$$

$$-2(x+8) = 2 - (x^2+1)$$

$$-2x-16 = -x^2-1 = (x-5)(x+3)=0$$

$$+x^2+1 + x^2+1 = (x=5)(x=-3)$$

$$+x^2-2x-15=0$$

 $26. \ 27^x = 9^{x+5}$

$$3^{3(x)} = 3^{2(x+5)}$$

$$3x = 3x + 10$$

$$3x = 3x + 10$$

27.
$$36^{5x+2} = \left(\frac{1}{6}\right)^{11-x}$$

$$62^{(5x+2)} = 6^{-1(11-x)}$$

$$10x+4 = -11+x$$

$$-x-4-4-x$$

$$9x = -15$$

$$x = \frac{-5}{3}$$

28.
$$18^x = 10$$

$$\frac{109_{18}18^{x} = 10}{109_{18}18^{x} = \log_{18}10}$$

$$x = \log_{18} 10$$

$$X = \frac{109 \ 10}{109 \ 18} \approx (80)$$

29.
$$7^{2x} = 30$$

$$109,7^{2x} = 109,30$$

$$2x = 109,30$$

$$2 = 109,30$$

$$2 = 2$$

$$2 = 2$$

30.
$$\log_3 x + \log_3 (x - 6) = 3$$

$$109_3(x^2-6x)=3$$

$$x^2 - 6x = 27$$

$$x^2-6x-27=0$$

$$(x-9)(x+3)=0$$

$$\log_2(x^2 + 2x) = 3$$

$$x_3 + 3x = 8$$

$$x^2 + 3x - 8 = 0$$

$$(x+4)(x-2)=0$$

32.
$$\log_4(2x) + \log_4(x+7) = 2$$

$$2x^2 + 14x = 16$$
 $-16 - 16$

$$x^2 + 7x - 8 = 0$$

$$(x+8)(x-1)=0$$

33.
$$\log_8(x) + \log_8(x+12) = 2$$

$$1098(x_3+19x)=9$$

$$x^2 + 12x = 64$$

$$x^2 + 12x - 64 = 0$$

$$(x+16)(x-4)=0$$

ALGEBRA 2 W/ TRIGONOMETRY – FINAL EXAM REVIEW Chapter 5 Review

Graph.

34.
$$y = \frac{-2}{x}$$

Domain: X Z O

Range: 4 7 0

Equations of vertical asymptote(s): X = 0

Coordinates of any hole(s): _______

Equation of horizontal asymptote(s): y = 0

Coordinates of the x-intercept(s): __none

Coordinates of the y-intercept: _____________________________

 $f(x) = \frac{2}{x+1} - 1$

Domain: XZ-

Range: 47

Equations of vertical asymptote(s):

Coordinates of any hole(s): ______

Equation of horizontal asymptote(s):

Coordinates of the x-intercept(s):

Coordinates of the y-intercept:

Graph

36.
$$y = \frac{(x^2 + 4)}{(x^2 - 4)}$$

Domain: $X \neq -a, a$

Range: <u>45-14>1</u>

Equations of vertical asymptote(s): X = 1

Equation of horizontal asymptote(s):

Coordinates of the x-intercept(s): none

Coordinates of the y-intercept:

37.
$$f(x) = \frac{3x^2}{x^2 - 4}$$

Domain: X # ± 2

Range: 450 473

Equations of vertical asymptote(s): $X = \pm 2$

Coordinates of any hole(s): __none

Equation of horizontal asymptote(s): <u>u=3</u>

Coordinates of the x-intercept(s): (0,0)

Coordinates of the y-intercept: (0,0)

Simplify the rational expression, if possible.

38.	$\frac{x^2 + 7x + 12}{x^2 + 7x + 12}$	•	(x+4)(x+3)
	$x^2 - 7x + 12$		x-4)(x-3)

40.
$$\frac{x^2 - 11x + 24}{x^2 - 3x - 40} = \frac{(x - 8)(x - 3)}{(x + 8)(x + 5)}$$

42.
$$\frac{x^2-4}{2x^2+7x+6} = \frac{(2x^2)(x-2)}{(2x+3)(x+2)}$$

39.
$$\frac{x^2 + 5x}{x^2 + 6x + 5} = \frac{x(x+5)}{(x+1)(x+5)}$$

 $41. \frac{8x^2 + 10x - 3}{6x^2 + 13x + 6}$ (2x+3)(3x+2)

43.
$$\frac{2x^2 + 7x + 5}{2x^2 + 1x - 15} = \frac{(2x+5)(x+1)}{(2x+5)(x-3)}$$

Perform the in-cated operation and simplify

Perform the indicated operation and simplify
$$44. \frac{5x^2y}{4y^3} \cdot \frac{12x^2y^2}{30x^3}$$

45.
$$\frac{2x^3}{7xy^2} \div \frac{6xy^2}{14y^3} = \frac{2}{2} \frac{x^3}{14y^3} = \frac{2}{2} \frac{x^3$$

$$\frac{2x^3y^3}{3x^2y^4} = \frac{2x}{3y}$$

Perform the indicated operation and simplify.

$$\frac{3.7}{46} - \frac{4.5}{3x}$$

$$\frac{21}{15X} - \frac{20}{15X} = \frac{1}{15X}$$

$$\frac{2x}{47} + \frac{2x-3}{3} + \frac{2x-3}{3}$$

$$(x+1)(x-1)^{+} (x+4)(x+1) (x-1)^{+}$$

$$48. \ \frac{4x^2y}{3y^2} \div \frac{16x^4}{9x^3y^2}$$

$$\frac{4x^{2}y}{5y^{2}} \cdot \frac{9x^{3}y^{2}}{16x^{4}} = \frac{3x^{5}y^{3}}{4x^{4}y^{3}} = \frac{3x^{5}y^{3}}{4x^{4}y^{3}} = \frac{3x^{5}y^{3}}{4x^{5}y^{3}} = \frac{3x^{5}y^{3}}{4x^{5}y^{5}} = \frac{3x^{5}y^{3}}{4x^{5}y^{5}} = \frac{3x^{5}y^{5}}{4x^{5}y^{5}} = \frac{3x^{5}y^{5}}{4x^{5}y^{5}} = \frac{3x^{5}y^{5}}{4x^{5}y^{5}} = \frac{3x^{5}y^{5}}{4x^{5}y^{5}} = \frac{3x^{5}y^{5}}{4x^{5}y^{5}} = \frac{3x^{5}y^{5}}{4x^{5}y^{5}} = \frac{3x^{5}y^{5}}{4x^{5}} = \frac{3x^{5}y^{5}}{4x^{5}}$$

49.
$$\frac{x^2 - 2x - 3}{2x - 4} \bullet \frac{x^2 + 3x - 10}{x^2 + 6x + 5}$$

$$\frac{3}{50}$$
 $\frac{4}{3x}$ $\frac{1}{2x^2}$ (3)

$$\frac{8x}{6x^2} - \frac{3}{6x^2} = \frac{8x - 3}{6x^2}$$

$$\begin{array}{c|c} 3 & 4x \\ 51. & x^2 - 9 \end{array} + \frac{(3x - 1)(x - 3)}{x^2 + 5x + 6}$$

$$(x+3)(x+3)(x-3)$$

Solve the equation.

$$52. \ \frac{x+4}{3x+5} = \frac{2x-1}{3x+1}$$

$$(x+4)(3x+1)=(2x-1)(3x+5)$$

$$3x^2+13x+4=6x^2+7x-5$$

 $3x^2-13x-4-3x^2-13x-4$

$$\frac{3}{0} = 3x_3 - 9x - 3$$

$$\int_{53}^{2} \frac{x^2 + 1}{3 - 3x} = \frac{x + 2}{3}$$

$$3(x^2+1)=(3-3x)(x+d)$$

$$6x^{2}+3x-3=0$$
 $2x^{2}+x^{-1}$

Solve the equation.

$$54. \ \frac{4}{3x-1} = \frac{5}{2x+4}$$

$$56. \frac{x+5}{2x+3} + \frac{x+1}{2x} = -1$$

$$56. \frac{x+5}{2x+3} + \frac{x+1}{2x} = -1$$

$$(-2x)(x+5) + (x+1)(2x+3) = (2x)(2x+3)(3+x)(4-x) + 4x(4-x) = 2(6x+1)$$

$$58. \frac{3x}{x+1} + \frac{6}{2x} = \frac{7}{x}$$

$$6x_{3}-8x-8=0$$

$$3x^{2}-4x-4=0$$

$$(3x+2)(x-2)=0$$

$$55. \ \frac{x+3}{x^2-5} = \frac{4}{x-2}$$

$$(x+3)(x-a)=4(x^{2}-5)$$

$$x^2+x-6=4x^2-20$$

$$\frac{1}{3+x}$$
 $\frac{1}{3+x}$ $\frac{1}{3+x}$ $\frac{1}{3+x}$ $\frac{1}{3+x}$ $\frac{1}{3+x}$ $\frac{1}{3+x}$

$$57. \frac{3+x}{2} + 2x = \frac{6x+1}{4x}$$

$$-\frac{5x^2+5x+10}{5} = \frac{0}{5}$$

$$(x-5)(x+1)=0$$

$$\frac{2x+14}{59} - 2 = \frac{2x+20}{3}$$

$$59. \frac{2x+14}{x+4} - 2 = \frac{2x+26}{2x+8}$$

$$-12 = 3x+30$$

ALGEBRA 2 W/ TRIGONOMETRY – FINAL EXAM REVIEW Chapter 6 Review

Find the number of combinations.

Find the number of combinations.	C 651
$_{60.8}C_3 = (56)$	61. 7 4 = 35
C	$C_{r} = C_{r}$
62. 6 4 = 15	63. 9 ^C 5 = (126)

The Student Senate consists of 6 seniors, 5 juniors, 4 sophomores, and 3 freshmen.

64. How many different committees of exactly 2 seniors and 2 juniors can be chosen?

65. How many different committees of at most 4 students can be chosen?

66. Use the binomial theorem to write the binomial expansion of $(2x-4)^7$. (2x)6 (-4)1-3-1792X6 (2x)5 (-4)2 -> + 10752x5 35 (2x)4 (-4)3 -> - 35840X4 $35 (ax)^3 (-4)^4 \rightarrow +71680 x^3$ (9x)2 (-4)5->-86016X2

(ax)' (-4)6 ->+57344X

(ax) (-4) -> -16384

128x7-1792x6+10752x5-35840x +71680x3-86016x2+57344x-16384

67. Find the coefficient of the
$$x^4$$
 term in the expansion of $(x+3)^8$.

$$\begin{cases} 1 & (X)_{0}(3)_{S} \\ 8 & (X)_{1}(3)_{S} \end{cases}$$

68. Find the coefficient of the
$$x^3$$
 term in the expansion of $(x-2)^7$.

$$7(3 = 35)$$

71. After sending, the email of a certain system has normally distributed arrival times with mean of 18 seconds and standard deviation of 1 second. What is the probability that a randomly selected email will take longer than 16 seconds to arrive?

72. A student found that the temperature of a ceramic furnace is normally distributed with mean temperature of 1425 degrees Fahrenheit and standard deviation of 40 degrees. What is the probability that a randomly selected furnace will have a temperature less than 1505 degrees Fahrenheit?

73. The time a medical team takes to arrive at the scene of an accident is normally distributed with a mean of 6 minutes and a standard deviation of 1 minute. What is the probability that the medical team takes at most 7 minutes to arrive at the scene of an accident?

Find the margin of error for a survey with the given sample size. Round your answer to the nearest tenth of a percent.

Find the margin of error for a survey with the given sample size.	Round your answer to the nearest tenth of a percent.
	75. 180
74. 2400	ま二 (+76%)
= (ta.0%)	1 mm (> 1.J1.)
13400 (5 a. v 1.)	VWU
Anio.	77. 288
76. 324	+ + (+ = 0.1)
4 (45/2)	= (-24/)
(- 3.01.)	11328
4334	
	1 1

Find the sample size required to achieve the given margin of error. Round your answer to the nearest whole number.

	or. Round your answer to the nearest whole number.
Find the sample size required to achieve the given margin of erro	70 10/
78. 10%	79. 1%
/6. 1070	
- 4 %	
	10
The state of the s	WY CARROLL
MY / / / / / / / / / / / / / / / / / / /	
AV (VIELL) VA	
	81. 4.5%
80. 2%	81. 4.370
ON OXIELE	I ALLS GOV TOLE
1 AZ WA-1561	1.073
T .02 (.02)	
	VX (IIAL)
VX /2CNO)	" (444)
- " (0.00)	
	14

ALGEBRA 2 W/ TRIGONOMETRY - FINAL EXAM REVIEW Chapter 9 Review

X Alana angle o	faright triangle. Find the value of	of the other five trigonometric functi	ions of O .
$\sin \theta = \frac{5}{13}$	$\cos \theta = \frac{12}{13}$	tan 8= 5	5 3
$\csc\theta = \frac{13}{5}$	$\sec \theta = \frac{13}{12}$	$\cot \theta = \frac{12}{5}$	13-423=C
$\tan \theta = \frac{2}{5}$	$\sin \theta = 2$ = $\sqrt{29}$ =	2429 cost= 39	2 129
$\cot \theta = \frac{5}{2}$	c2C θ= 124	Sec 9= 139 5	5
84. $\tan \theta = 3$	Sin 0= 3/10	cos θ= √10 10	N/s
$\cot \theta = \frac{1}{3}$	$CSC\theta = \sqrt{10}$	SEC 8 = √10	3

Find the exact values of x and y. Leave your answers in simplest radical form.

degree measure to radians or the radian measure to degrees.

Con	vert the de	gree measi	He to fadians of the res
87.	$-\frac{3\pi}{4}$	180,	=(135°)
V	/:	4 4	

$$89. \frac{15\pi}{8}. \frac{130}{8} = 337.5$$

Use the given point on the terminal side at angle heta in standard position to evaluate the six trigonometric functions of heta .

91.
$$(-4,2)$$

 $\sin \theta = 2.65 = 6.35$

$$tan\theta = \frac{2}{4} = \frac{1}{2} \cot \theta = -2$$

$$92. (-1, -2)$$

$$\tan\theta = 2$$
 $\cot\theta = \frac{1}{2}$

Evaluate the function. Leave your answer in simplest radical form.

$$\sin 60^{\circ} = 3$$

$$\sec(210^{\circ})$$

Evaluate the expression. Give your answer in both radians and degrees.

17100	TOURS DIE	4. [
97.	cos ⁻¹	$\left(\frac{1}{2}\right)$

$$\theta = 60^{\circ}$$

$$\int_{98.}^{0} \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

99. An escalator ascends 45 feet over a horizontal distance of 30 feet. What is the angle of elevation?

$$\cos \theta = \frac{30}{45}$$

$$\theta = \tan^{-1}(\frac{3}{6})$$
 $\theta = (6.57^{\circ})$

$$\theta = \cos^{-1}\left(\frac{30}{45}\right)$$

$$101. \quad y = 3\cos\left(\frac{\pi}{2}x\right)$$

$$102. \quad y = 1 + \sin(2x)$$

 $_{103.} \quad y = 3\sin\left(3x\right)$

104. $y = -2 + \cos(3x)$

Write the equation of the graph described.

The graph of $y = \cos(2x) + 3$ translated down 1 unit and then reflected vertically. 105.

$$y = -\cos(2x) + 2$$

The graph of $y = \frac{1}{4}\cos(2x)$ translated up 4 units and left π units. 106.

The graph of $y = \frac{1}{2} \sin(4x)_{\text{translated right }} \frac{\pi}{2}$ units and down 4 units. 107.

$$y = \frac{1}{2} \sin 4(x - \frac{\pi}{2}) - 4$$

Find the values of the other five trigonometric functions of heta , given:

Find the values of the other five trigonometric functions of
$$\theta$$
, given:

$$\sec \theta = \frac{5}{3}, \frac{3\pi}{2} < \theta < 2\pi$$

$$\sin \theta = \frac{4}{5} \quad \cos \theta = \frac{3}{5} \quad \tan \theta = \frac{4}{3}$$

$$\cot \theta = -\frac{3}{4}$$

109.
$$\csc\theta = \frac{25}{7}, \frac{\pi}{2} < \theta < \pi$$

$$3\sin\theta = \frac{100}{35}$$

$$\cos\theta = \frac{24}{35} \quad \tan\theta = \frac{7}{34}$$

$$\sec\theta = -\frac{35}{34} \quad \cot\theta = -\frac{34}{7}$$