\qquad
\qquad
\qquad

Extra Practice

Chapter 8

Lesson 8-1

Find the degree of each monomial.

1. $7 r^{3} \quad 3$
2. $-4 n^{2} \quad 2$
3. $9 \quad 0$
4. $16 w^{12} 12$
5. $15 a^{5} b^{2} \quad 7$
6. $-4 x^{2} y^{3} z^{4} \quad 9$

Write each polynomial in standard form. Then name each polynomial based on degree and number of terms.
7. $4 x+x^{2}-1$
8. $2 n^{2}+3 n^{3}$
9. $-4 y$
$x^{2}+4 x-1$; quadratic trinomial $3 n^{3}+2 n^{2}$; cubic binomial
$-4 y$; linear monomial
10. $w+3-2 w+8 w^{3}$
11. 5
$8 w^{3}-w+3$; cubic trinomial 5 ; constant monomial
12. $14 d-d^{4}+3 d$
$-d^{4}+17 d ;$
fourth degree binomial

Simplify. Write each answer in standard form.

13. $\left(5 x^{3}+3 x^{2}-7 x+10\right)-\left(3 x^{3}-x^{2}+4 x-1\right) 2 x^{3}+4 x^{2}-11 x+11$
14. $\left(x^{2}+3 x-2\right)+\left(4 x^{2}-5 x+2\right) 5 x^{2}-2 x$
15. $\left(4 m^{3}+7 m-4\right)+\left(2 m^{3}-6 m+8\right) 6 m^{3}+m+4$
16. $\left(8 t^{2}+t+10\right)-\left(9 t^{2}-9 t-1\right)-t^{2}+10 t+11$
17. $\left(-7 c^{3}+c^{2}-8 c-11\right)-\left(3 c^{3}+2 c^{2}+c-4\right)-10 c^{3}-c^{2}-9 c-7$
18. $\left(6 v+3 v^{2}-9 v^{3}\right)+\left(7 v-4 v^{2}-10 v^{3}\right)-19 v^{3}-v^{2}+13 v$
19. $\left(s^{4}-s^{3}-5 s^{2}+3 s\right)-\left(5 s^{4}+s^{3}-7 s^{2}-s\right)-4 s^{4}-2 s^{3}+2 s^{2}+4 s$
20. $\left(9 w-4 w^{2}+10\right)+\left(8 w^{2}+7+5 w\right) \quad 4 w^{2}+14 w+17$
21. The sides of a rectangle are $4 t-1$ and $5 t+9$. Write an expression for the perimeter of the rectangle. $18 t+16$
22. Three consecutive integers are $n-1, n$, and $n+1$. Write an expression for the sum of the three integers. $3 n$

Find an expression for the perimeter of each figure.
23. A rectangle has side lengths $4 k-3$ and $2 k+2$. $12 k-2$
24. A triangle has side lengths $2 t^{2}, 4 t-3$, and $10-2 t .2 t^{2}+2 t+7$
25. A rhombus has two sides $3 d^{3}-2 d$ long and two sides $d^{2}+5$ long.

$$
6 d^{3}+2 d^{2}-4 d+10
$$

\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 8

Lesson 8-2

Simplify each product.

26. $2 y(y+1)$
$2 y^{2}+2 y$
27. $4 b\left(b^{2}+3\right)$
$4 b^{3}+12 b$
28. $5 k\left(k^{2}+8 k\right)$
$5 k^{3}+40 k^{2}$
29. $9 c\left(c^{2}-3 c+5\right)$
$9 c^{3}-27 c^{2}+45 c$
30. $8 m(4 m-5)$
$32 m^{2}-40 m$
31. $5 r^{2}\left(r^{2}+4 r-2\right) ~ 子 20 r^{4}-10 r^{2}$
32. $-3 x\left(x^{2}+3 x-1\right)$
33. $-x\left(1+x+x^{2}\right)$
34. $2 m^{2}\left(m^{3}+m-2\right)$
$2 m^{5}+2 m^{3}-4 m^{2}$
$-3 x^{3}-9 x^{2}+3 x$
$-x^{3}-x^{2}-x$

Find the GCF terms of each polynomial. Factor.
35. $3 y^{4}-9 y^{2}$
$3 y^{2}\left(y^{2}-3\right)$
36. $t^{6}+t^{4}-t^{5}+t^{2}$
$t^{2}\left(t^{4}-t^{3}+t^{2}+1\right)$
37. $3 m^{2}-6+9 m$
$3\left(m^{2}+3 m-2\right)$
38. $16 c^{2}-4 c^{3}+12 c^{5}$
39. $8 v^{6}+2 v^{5}-10 v^{9}$
40. $6 n^{2}-3 n^{3}+2 n^{4}$
$4 c^{2}\left(3 c^{3}-c+4\right)$
$-2 v^{5}\left(5 v^{4}-4 v-1\right)$
$n^{2}\left(2 n^{2}-3 n+6\right)$
41. $5 r+20 r^{3}+15 r^{2}$
$5 r\left(4 r^{2}+3 r+1\right)$
42. $9 x^{6}+5 x^{5}+4 x^{7}$
$x^{5}\left(4 x^{2}+9 x+5\right)$
43. $4 d^{8}-2 d^{10}+7 d^{4}$
$-d^{4}\left(2 d^{6}-4 d^{4}-7\right)$
44. A rectangular roof has a length of $13 g$ and a width of $4 g+7$. Write an expression for the area of the roof. $52 g^{2}+91 g$
45. A cylinder has a base area of $3 w^{2}+5$ and a height of $4 w$. Find an expression for the volume. $12 w^{3}+20 w$

Lessons 8-3 and 8-4

Simplify each product. Write in standard form.
46. $(5 c+3)(-c+2)$
$-5 c^{2}+7 c+6$
47. $(3 t-1)(2 t+1)$
$6 t^{2}+t-1$
48. $(w+2)\left(w^{2}+2 w-1\right)$
$w^{3}+4 w^{2}+3 w-2$
49. $(3 t+5)(t+1)$
$3 t^{2}+8 t+5$
50. $(2 n-3)(2 n+4)$
$4 n^{2}+2 n-12$
51. $(b+3)(b+7)$
$b^{2}+10 b+21$
52. $(3 x+1)^{2}$
53. $(5 t+4)^{2}$
$25 t^{2}+40 t+16$
54. $(w-1)\left(w^{2}+w+1\right)$
$9 x^{2}+6 x+1$
56. $(3 y-2)(3 y+2)$
$9 y^{2}-4$
57. $\left(w^{2}+2\right)\left(w^{2}-2\right)$
$w^{4}-4$
58. Geometry A rectangle has dimensions $3 x-1$ and $2 x+5$. Write an expression for the area of the rectangle as a product and in standard form. $(3 x-1)(2 x+5), 6 x^{2}+13 x-5$
59. Write an expression for the product of the two consecutive odd integers $n-1$ and $n+1 .(n-1)(n+1)=n^{2}-1$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 8

60. A circular pool has a radius of $5 p-3 \mathrm{~m}$. Write an expression for area the pool. $25 p^{2} \pi-30 p \pi+9 \pi$
61. An office building has a rectangular base with side lengths of $12 y-7$ and $22 y+4$. Write an expression for the area of a floor in the office building. $264 y^{2}-106 y-28$
62. Suppose you play a game with two number cubes. Let A represent rolling a number less than 4 and B represent rolling a number greater than 4 . The probability of A is $\frac{1}{2}$. The probability of B is $\frac{1}{3}$.
a. Find $\left(\frac{1}{2} A+\frac{1}{3} B\right)^{2} \frac{1}{4} A^{2}+\frac{1}{3} A B+\frac{1}{9} B^{2}$
b. What is the probability that both cubes show a number less than 4 ? $\frac{1}{4}$
c. What is the probability that one cube shows a number less than 4 and the other cube shows a number greater than $4 ? \frac{1}{6}$
63. Suppose there are two squares with side lengths of $4 x-3$ and $2 x+4$. Write an expression for the area of each square. Find the area of each square if $x=6 \mathrm{~cm} .16 x^{2}-24 x+9,4 x^{2}+16 x+16 ; 441 \mathrm{~cm}^{2}, 256 \mathrm{~cm}^{2}$
64. A rectangle has dimensions of $2 x+3$ and $4 x-3$. Write an expression for the area of the rectangle. Then find the area of the rectangle if $x=3 \mathrm{ft} .8 x^{2}+6 x-9 ; 81 \mathrm{ft}^{2}$

Lessons 8-5 to 8-7

Factor each expression.

65. $x^{2}-4 x+3$ $(x-3)(x-1)$
66. $\begin{aligned} & 3 x^{2}-4 x+1 \\ & (3 x-1)(x-1)\end{aligned}$
67. $v^{2}+v-2$
68. $5 t^{2}-t-18$
$(t-2)(5 t+9)$
69. $m^{2}+9 m-22$
$(m-2)(m+11)$
70. $\begin{array}{r}x^{2}-2 x-15 \\ (x-5)(x+3)\end{array}$
71. $2 n^{2}+n-3$
$(n-1)(2 n+3)$
72. $2 h^{2}-5 h-3$
73. $m^{2}-25$
$(h-3)(2 h+1)$
$(m-5)(m+5)$
74. $9 y^{2}-1$
$(3 y+1)(3 y-1)$
75. $9 y^{2}+6 y+1$
$(3 y+1)^{2}$
76. $p^{2}+2 p+1$
$(p+1)^{2}$
77. $x^{2}+6 x+9$
$(x+3)^{2}$
78. $\begin{aligned} & 25 x^{2}-9 \\ & (5 x+3)(5 x-3)\end{aligned}$
79. $4 t^{2}+t-3$.
80. $9 c^{2}-169$
81. $4 m^{2}-121$
$(2 m+11)(2 m-11)$
82. $3 v^{2}+10 v-8$
$(3 c-13)(3 c+13)$
83. $4 g^{2}+4 g+1$
$(2 g+1)^{2}$
84. $-w^{2}+5 w-4$
$-(w-4)(w-1)$
85. $9 t^{2}+12 t+4$
$(3 t+2)^{2}$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 8

86. $12 m^{2}-5 m-2$
87. $36 s^{2}-1$
$(3 m-2)(4 m+1)$
$(6 s+1)(6 s-1)$
88. $c^{2}-10 c+25$
$(c-5)^{2}$
89. Write an expression for the side length of a square that has an area of $h^{2}-12 h+36 . h-6$
90. Write an expression for the radius of a circular flower garden with an area of $\pi m^{2}+14 \pi m+49 \pi . m+7$

Use factoring to find expressions for possible dimensions of each figure.
91. A rectangular parking lot has an area of $10 w^{2}-9 w-40 .(5 w+8)$ by $(2 w-5)$
92. A rectangular door has an area of $12 d^{2}-31 d+14 \quad(12 d-7)$ by $(d-2)$
93. A circular window has an area of $49 \pi v^{2}+84 \pi v+36 \pi$. radius: $(7 v+6)$
94. A rectangular field has an area of $64 m^{2}-169 n^{2}$. $(8 m-13 n)$ by $(8 m+13 n)$
95. A rectangular prism has a volume of $6 t^{3}+44 t^{2}+70 t .2 t$ by $(3 t+7)$ by $(t+5)$

Lesson 8-8

Factor each expression.

96. $3 y^{3}+9 y^{2}-y-3$
$(y+3)\left(3 y^{2}-1\right)$
97. $3 u^{3}+u^{2}-6 u-2$
$(3 u+1)\left(u^{2}-2\right)$
98. $w^{3}-3 w^{2}+3 w-9$ $(w-3)\left(w^{2}+3\right)$
99. $4 z^{3}+2 z^{2}-2 z-1$
100. $3 x^{3}+8 x^{2}-3 x$
$(2 z+1)\left(2 z^{2}-1\right)$
$x(x+3)(3 x-1)$
101. $y^{5}-9 y$
$y\left(y^{2}-3\right)\left(y^{2}+3\right)$
102. $2 p^{3}-4 p^{2}+2 p-4$
103. $3 y^{3}-3 y^{2}-6 y$
104. $2 n^{3}+10 n^{2}+3 n+15$
$2(p-2)\left(p^{2}+1\right)$
$3 y(y-2)(y+1)$
$\left(2 n^{2}+3\right)(n+5)$

Use factoring to find expressions for possible dimensions of each figure.
105. A rectangular field has an area of $10 k^{3}+25 k^{2}-6 k-15$. $\left(5 k^{2}-3\right)$ by $(2 k+5)$
106. A rectangular swimming pool has an area of $5 x^{3}+5 x^{2}-2 x-2$. $\left(5 x^{2}-2\right)(x+1)$
107. A rectangular sheet of paper has an area of $6 n^{3}+9 n^{2}-8 n-12$. $\left(3 n^{2}-4\right)(2 n+3)$

