Name

_____ Class _____ Date _____

Extra Practice

Chapter 8

Lesson 8-1

Find the degree of each monomial.

2. $-4n^2$ **2 1**. $7r^3$ 3 **3.** 9 **0 5.** $15a^5b^2$ **7 6.** $-4x^2y^3z^4$ **4.** 16w¹² **12** 9

Write each polynomial in standard form. Then name each polynomial based on degree and number of terms.

8. $2n^2 + 3n^3$ 7. $4x + x^2 - 1$ 8. $2n^2 + 3n^3$ 9. -4y $x^2 + 4x - 1$; quadratic trinomial $3n^3 + 2n^2$; cubic binomial-4y; linear monomial 7. $4x + x^2 - 1$ **10.** $w + 3 - 2w + 8w^3$ **12.** $14d - d^4 + 3d$ **11.** 5 $-d^{4} + 17d;$ $8w^3 - w + 3$; cubic trinomial 5; constant monomial fourth degree binomial Simplify, Write each answer in standard form.

12
$$(5x^3 + 2x^2 - 7x + 10) = (2x^3 - x^2 + 4x - 1)$$
 $2x^3 + 4x^2 - 11x + 11$

13.
$$(5x^{3} + 3x^{2} - 7x + 10) - (3x^{3} - x^{2} + 4x - 1) 2x^{3} + 4x^{2} - 11x + 11$$

14. $(x^{2} + 3x - 2) + (4x^{2} - 5x + 2) 5x^{2} - 2x$
15. $(4m^{3} + 7m - 4) + (2m^{3} - 6m + 8) 6m^{3} + m + 4$
16. $(8t^{2} + t + 10) - (9t^{2} - 9t - 1) -t^{2} + 10t + 11$
17. $(-7c^{3} + c^{2} - 8c - 11) - (3c^{3} + 2c^{2} + c - 4) - 10c^{3} - c^{2} - 9c - 7$
18. $(6v + 3v^{2} - 9v^{3}) + (7v - 4v^{2} - 10v^{3}) -19v^{3} - v^{2} + 13v$
19. $(s^{4} - s^{3} - 5s^{2} + 3s) - (5s^{4} + s^{3} - 7s^{2} - s) -4s^{4} - 2s^{3} + 2s^{2} + 4s$
20. $(9w - 4w^{2} + 10) + (8w^{2} + 7 + 5w) - 4w^{2} + 14w + 17$

- **21.** The sides of a rectangle are 4t 1 and 5t + 9. Write an expression for the perimeter of the rectangle. 18t + 16
- **22**. Three consecutive integers are n 1, n, and n + 1. Write an expression for the sum of the three integers. 3n

Find an expression for the perimeter of each figure.

- **23.** A rectangle has side lengths 4k 3 and 2k + 2. 12k 2
- **24.** A triangle has side lengths $2t^2$, 4t 3, and 10 2t. $2t^2 + 2t + 7$
- **25.** A rhombus has two sides $3d^3 2d$ long and two sides $d^2 + 5$ long. $6d^3 + 2d^2 - 4d + 10^3$

Extra Practice (continued)

Chapter 8

Lesson 8-2

Simplify each product.

28. $9c(c^2 - 3c + 5)$ **27.** $4b(b^2 + 3)$ **26.** 2y(y + 1) $9c^3 - 27c^2 + 45c$ $4b^3 + 12b$ $2v^2 + 2v$ **30.** $5k(k^2 + 8k)$ **31.** $5r^2(r^2 + 4r - 2)$ **29.** 8m(4m-5) $5r^{4} + 20r^{3} - 10r^{2}$ $5k^3 + 40k^2$ $32m^2 - 40m$ **33.** $-3x(x^2 + 3x - 1)$ **34.** $-x(1 + x + x^2)$ **32.** $2m^2(m^3 + m - 2)$ $-x^{3} - x^{2} - x$ $2m^5 + 2m^3 - 4m^2$ $-3x^3 - 9x^2 + 3x$

Find the GCF terms of each polynomial. Factor.

- **36.** $t^6 + t^4 t^5 + t^2$ **35.** $3v^4 - 9v^2$ **37.** $3m^2 - 6 + 9m$ $t^{2}(t^{4}-t^{3}+t^{2}+1)$ $3v^2(v^2 - 3)$ $3(m^2 + 3m - 2)$ **38.** $16c^2 - 4c^3 + 12c^5$ $4c^2(3c^3 - c + 4)$ **39.** $8v^6 + 2v^5 - 10v^9$ **40.** $6n^2 - 3n^3 + 2n^4$ $n^{2}(2n^{2}-3n+6)$ $-2v^{5}(5v^{4}-4v-1)$ **41.** $5r + 20r^3 + 15r^2$ **42.** $9x^6 + 5x^5 + 4x^7$ **43.** $4d^8 - 2d^{10} + 7d^4$ $-d^{4}(2d^{6} - 4d^{4} - 7)$ $5r(4r^2 + 3r + 1)$ $x^{5}(4x^{2} + 9x + 5)$
- **44.** A rectangular roof has a length of 13g and a width of 4g + 7. Write an expression for the area of the roof. $52g^2 + 91g$
- **45.** A cylinder has a base area of $3w^2 + 5$ and a height of 4w. Find an expression for the volume. $12w^3 + 20w$

Lessons 8-3 and 8-4

Simplify each product. Write in standard form.

46.	(5c + 3)(-c + 2)	47. $(3t-1)(2t+1)$	48. $(w + 2)(w^2 + 2w - 1)$
	$-5c^2 + 7c + 6$	$6t^2 + t - 1$	$w^3 + 4w^2 + 3w - 2$
49.	(3t + 5)(t + 1)	50. $(2n-3)(2n+4)$	51. (<i>b</i> + 3)(<i>b</i> + 7)
	$3t^2 + 8t + 5$	$4n^2 + 2n - 12$	b ² + 10b + 21
52.	$(3x + 1)^2$	53. $(5t + 4)^2$	54. $(w-1)(w^2 + w + 1)$
	$9x^2 + 6x + 1$	$25t^2 + 40t + 16$	$w^{3} - 1$
55.	(a + 4)(a - 4)	56. $(3y - 2)(3y + 2)$	57. $(w^2 + 2)(w^2 - 2)$
	a ² - 16	$9y^2 - 4$	$w^4 - 4$

- **58.** Geometry A rectangle has dimensions 3x 1 and 2x + 5. Write an expression for the area of the rectangle as a product and in standard form. (3x - 1)(2x + 5), $6x^2 + 13x - 5$
- **59.** Write an expression for the product of the two consecutive odd integers n 1and n + 1. $(n - 1)(n + 1) = n^2 - 1$

Prentice Hall Algebra 1 • Extra Practice

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Class Date

Extra Practice (continued)

Chapter 8

- **60.** A circular pool has a radius of 5p 3 m. Write an expression for area the pool. $25p^2\pi - 30p\pi + 9\pi$
- **61.** An office building has a rectangular base with side lengths of 12y 7and 22y + 4. Write an expression for the area of a floor in the office building. $264y^2 - 106y - 28$
- 62. Suppose you play a game with two number cubes. Let A represent rolling a number less than 4 and B represent rolling a number greater than 4. The probability of *A* is $\frac{1}{2}$. The probability of *B* is $\frac{1}{3}$.
 - **a.** Find $\left(\frac{1}{2}A + \frac{1}{3}B\right)^2 \frac{1}{4}A^2 + \frac{1}{3}AB + \frac{1}{9}B^2$
 - **b.** What is the probability that both cubes show a number less than $4?\frac{1}{4}$
 - c. What is the probability that one cube shows a number less than 4 and the other cube shows a number greater than 4? $\frac{1}{6}$
- **63.** Suppose there are two squares with side lengths of 4x 3 and 2x + 4. Write an expression for the area of each square. Find the area of each square if x = 6 cm. $16x^2 - 24x + 9$, $4x^2 + 16x + 16$; 441 cm², 256 cm²
- **64.** A rectangle has dimensions of 2x + 3 and 4x 3. Write an expression for the area of the rectangle. Then find the area of the rectangle if x = 3 ft. $8x^2 + 6x - 9$; 81 ft²

Lessons 8-5 to 8-7

Factor each expression.

65.	$x^2 - 4x + 3$ (x - 3)(x - 1)	66.	$3x^2 - 4x + 1$ (3x - 1)(x - 1)	67.	$v^2 + v - 2$ (v - 1)(v + 2)
68.	$5t^2 - t - 18$ (t - 2)(5t + 9)	69.	$m^2 + 9m - 22$ (m - 2)(m + 11)	70.	$x^2 - 2x - 15$ (x - 5)(x + 3)
71.	$2n^2 + n - 3$ (n - 1)(2n + 3)	72.	$2h^2 - 5h - 3$ (h - 3)(2h + 1)	73.	$m^2 - 25$ (m - 5)(m + 5)
74.	$9y^2 - 1$ (3y + 1)(3y - 1)	75.	$9y^2 + 6y + 1$ (3y + 1) ²	76.	$p^2 + 2p + 1$ (p + 1) ²
77.	$x^2 + 6x + 9$ (x + 3) ²	78.	$25x^2 - 9$ (5x + 3)(5x - 3)	79.	$4t^2 + t - 3$ (t + 1)(4t - 3)
80.	9c ² - 169 (3c - 13)(3c + 13)	81.	4m ² - 121 (2m + 11)(2m - 11)	82.	$3v^2 + 10v - 8$ (v + 4)(3v - 2)
83.	$4g^2 + 4g + 1$ (2g + 1) ²	84.	$-w^2 + 5w - 4$ -(w - 4)(w - 1)	85.	$9t^2 + 12t + 4$ (3t + 2) ²

Prentice Hall Algebra 1 • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Extra Practice (continued)

Chapter 8

- **86.** $12m^2 5m 2$ (3m - 2)(4m + 1) **87.** $36s^2 - 1$ (6s + 1)(6s - 1) **88.** $c^2 - 10c + 25$ (c - 5)²
- **89.** Write an expression for the side length of a square that has an area of $h^2 12h + 36$. h 6
- **90.** Write an expression for the radius of a circular flower garden with an area of $\pi m^2 + 14\pi m + 49\pi$. m + 7

Use factoring to find expressions for possible dimensions of each figure.

- **91.** A rectangular parking lot has an area of $10w^2 9w 40$. (5w + 8) by (2w 5)
- **92.** A rectangular door has an area of $12d^2 31d + 14$ (12d 7) by (d 2)
- **93.** A circular window has an area of $49\pi v^2 + 84\pi v + 36\pi$. radius: (7v + 6)
- **94.** A rectangular field has an area of $64m^2 169n^2$. (8m 13n) by (8m + 13n)
- **95.** A rectangular prism has a volume of $6t^3 + 44t^2 + 70t$. **2t by (3t + 7) by (t + 5)**

Lesson 8-8

Factor each expression.

96.	$3y^3 + 9y^2 - y - 3$	97. $3u^3 + u^2 - 6u - 2$	98. $w^3 - 3w^2 + 3w - 9$
	$(y + 3)(3y^2 - 1)$	(3 <i>u</i> + 1)(<i>u</i> ² - 2)	$(w - 3)(w^2 + 3)$
99.	$4z^3 + 2z^2 - 2z - 1$	100. $3x^3 + 8x^2 - 3x$	101. $y^5 - 9y$
	(2z + 1)(2z ² - 1)	<i>x</i> (<i>x</i> + 3)(3 <i>x</i> - 1)	$y(y^2 - 3)(y^2 + 3)$
102.	$2p^3 - 4p^2 + 2p - 4$	103. $3y^3 - 3y^2 - 6y$	104. $2n^3 + 10n^2 + 3n + 15$
	2(p - 2)(p ² + 1)	3 <i>y</i> (y - 2)(y + 1)	$(2n^2 + 3)(n + 5)$

Use factoring to find expressions for possible dimensions of each figure.

105. A rectangular field has an area of $10k^3 + 25k^2 - 6k - 15$. $(5k^2 - 3)$ by (2k + 5)**106.** A rectangular swimming pool has an area of $5x^3 + 5x^2 - 2x - 2$. $(5x^2 - 2)(x + 1)$ **107.** A rectangular sheet of paper has an area of $6n^3 + 9n^2 - 8n - 12$. $(3n^2 - 4)(2n + 3)$

> **Prentice Hall Algebra 1** • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.