Extra Practice

Chapter 7

Lessons 7-1 to 7-4

Simplify each expression. Use only positive exponents.

1.
$$(2t)^{-6}$$
 $\frac{1}{64t^6}$

2.
$$5m^5m^{-8}$$
 $\frac{5}{m^3}$

3.
$$(4.5)^4(4.5)^{-2}$$
 (4.5)²

4.
$$(m^7t^{-5})^2 \frac{m^{14}}{t^{10}}$$

5.
$$(x^2n^4)(n^{-8}) \frac{x^2}{n^4}$$

6.
$$(w^{-2}j^{-4})^{-3}(j^7j^3)$$
 w^6j^{22}

7.
$$(t^6)^3(m)^2$$
 $t^{18}m^2$

8.
$$(3n^4)^2$$
 9n⁸

9.
$$\frac{r^5}{g^{-3}}$$
 r^5g^3

10.
$$\frac{1}{a^{-4}}$$
 a⁴

11.
$$\frac{w^7}{w^{-6}}$$
 w¹³

12.
$$\frac{6}{t^{-4}}$$
 6 t^4

13.
$$\frac{a^2b^{-7}c^4}{a^5b^3c^{-2}} \frac{c^6}{a^3b^{10}}$$

14.
$$\frac{(2t^5)^3}{4t^8t^{-1}}$$
 2t⁸

15.
$$\left(\frac{a^6}{a^7}\right)^{-3}$$
 a³

16.
$$\left(\frac{c^5c^{-3}}{c^{-4}}\right)^{-2} \frac{1}{c^{12}}$$

17.
$$\left(\frac{4x^3}{8x^{-2}}\right)^0$$
 1

18.
$$\left(\frac{y^{-3}}{y^3}\right)^2 \frac{1}{y^{12}}$$

Evaluate each expression for m = 2, t = -3, w = 4, and z = 0.

19.
$$t^m$$
 9

20.
$$t^{-m}$$
 $\frac{1}{9}$

21.
$$(w \cdot t)^m$$
 144

22.
$$w^m \cdot t^m$$
 144

23.
$$(w^z)^m$$
 1

24.
$$w^m w^z$$
 16

25.
$$z^{-t}(m^t)^z$$
 0

26.
$$w^{-t}t^{t}$$
 $-\frac{64}{27}$

27.
$$\left(\frac{t^w}{m^t}\right)^z$$
 1

- 28. Suppose an investment doubles in value every 5 years. This is year the investment is worth \$12,480. How much will it be worth 10 years from now? How much was it worth 5 years ago? \$49,920; \$6240
- **29.** What is the volume of a cube with a side length of $\frac{4}{5}$ m? $\frac{64}{125}$ m³

Extra Practice (continued)

Chapter 7

- **30.** A light-year is the distance light travels in one year. If the speed of light is about 3 imes 10⁵ km/s, how long is a light-year in kilometers? (Use 365 days for the length of a year). about 9.5×10^{12} km
- **31.** The radius of Earth is approximately 6.4×10^6 m. Use the formula $V = \frac{4}{3}\pi r^3$ to find the volume of Earth. about 1.1×10^{21} m³
- **32.** A spherical cell has a radius of 2.75×10^{-6} m. Use the formula for the surface area of a sphere S.A. = $4\pi r^2$ to find the surface area of a cell. about 9.5×10^{-11} m²
- 33. The speed of sound is approximately $1.2 imes 10^3$ km/h. How long does it take for sound to travel 7.2 imes 10^2 km? Write your answer in minutes. 36 min

Lessons 7-5

Find the value of each expression.

34.
$$\sqrt[2]{64}$$
 8

35.
$$\sqrt[3]{343}$$
 7

36.
$$\sqrt[4]{16}$$
 2

37.
$$\sqrt[3]{125}$$
 5

38.
$$\sqrt[4]{256}$$
 4

39.
$$\sqrt[2]{144}$$
 12

Write each expression in radical form.

40.
$$b^{\frac{3}{4}} \sqrt[4]{b^3}$$

41.
$$16a^{\frac{2}{3}}$$
 16 $\sqrt[3]{a^2}$

42.
$$(4c)^{\frac{1}{2}}$$
 2 \sqrt{c}

43.
$$y^{\frac{1}{4}}$$
 4 \sqrt{y}

44.
$$(32b)^{\frac{2}{3}}$$
 8 $\sqrt[3]{2b^2}$

45.
$$12a^{\frac{3}{4}}$$
 12 $\sqrt[4]{a^{\frac{3}{4}}}$

Write each expression in exponential form.

46.
$$\sqrt[4]{n^3}$$
 $n^{\frac{3}{4}}$

47.
$$\sqrt[3]{27m^2}$$
 3m^{2/3}

48.
$$\sqrt{81z}$$
 9 $z^{\frac{1}{2}}$

49.
$$\sqrt[3]{128y^2}$$
 4 \cdot **2** $\frac{1}{3}$ \cdot $y^{\frac{2}{3}}$ **50.** $\sqrt{(5b)^4}$ **25** b^2

50.
$$\sqrt{(5b)^4}$$
 25 b^4

51.
$$\sqrt[4]{(16x)^2}$$
 4 $x^{\frac{1}{2}}$

Extra Practice (continued)

Chapter 7

Lessons 7-6

Evaluate each function over the domain $\{-1, 0, 1, 2\}$. As the values of the domain increase, do the values of the function increase or decrease?

52.
$$y = 3^x$$
 $\left\{\frac{1}{3}, 1, 3, 9\right\}$; increase

53.
$$y = \left(\frac{3}{4}\right)^x$$
 $\left\{\frac{4}{3}, 1, \frac{3}{4}, \frac{9}{16}\right\}$; decrease

54.
$$y = 1.5^x$$
 $\left\{\frac{2}{3}, 1, \frac{3}{2}, \frac{9}{4}\right\}$; increase

55.
$$y = \left(\frac{1}{2}\right) \cdot 3^x$$
 $\left\{\frac{1}{6}, \frac{1}{2}, \frac{3}{2}, \frac{9}{2}\right\}$; increase

$$\left\{-\frac{3}{7}, -3, -21, -147\right\}$$
; decrease

$$\left\{-\frac{1}{4}, -1, -4, -16\right\}$$
; decrease

52.
$$y = 3^x$$
 $\begin{cases} \frac{1}{3}, 1, 3, 9 \end{cases}$; increase

 $\begin{cases} \frac{4}{3}, 1, \frac{3}{4}, \frac{9}{16} \end{cases}$; decrease

$$\begin{cases} \frac{1}{3}, 1, 3, 9 \end{cases}$$
; increase

$$\begin{cases} \frac{1}{3}, 1, 3, 9 \end{cases}$$
; increase

$$\begin{cases} \frac{1}{3}, 1, \frac{3}{4}, \frac{9}{16} \end{cases}$$
; decrease

$$\begin{cases} \frac{1}{2}, 1, \frac{3}{2}, \frac{9}{4} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{2}, 1, \frac{3}{2}, \frac{9}{4} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{3}{2}, \frac{9}{2} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{3}{2}, \frac{9}{2} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{3}{2}, \frac{9}{4} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{9}{4}, \frac{1}{6}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{1}{2}, \frac{9}{4}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{9}{4}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{9}{4}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{9}{4}, \frac{9}{16}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{9}{4}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{1}{2}, \frac{9}{4}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{9}{4}, \frac{9}{16}, \frac{9}{16} \end{cases}$$
; increase

$$\begin{cases} \frac{1}{6}, \frac{9}{4}, \frac{9}{16}, \frac{9}{1$$

59.
$$y = 2^x$$
 $\left\{\frac{1}{2}, 1, 2, 4\right\}$; increase

60.
$$y = 2 \cdot 3^x$$
 $\left\{ \frac{2}{3}, 2, 6, 18 \right\}$; increase

61.
$$y = (0.8)^x$$
 $\left\{ \frac{5}{4}, 1, \frac{4}{5}, \frac{16}{25} \right\}$; decrease

62.
$$y = 2.5^x$$
 $\left\{\frac{2}{5}, 1, \frac{5}{2}, \frac{25}{4}\right\}$; increase

63.
$$y = -4 \cdot (0.2)^x$$

$$\left\{-20, -4, -\frac{4}{5}, -\frac{4}{25}\right\}; \text{ increase}$$

Write and solve an exponential equation to answer each question

- **64.** Suppose an investment of \$5,000 doubles every 12 years. How much is the investment worth after 36 years? After 48 years? $f(x) = 5000 \cdot 2^x$; \$40,000; \$80,000
- 65. Suppose 15 animals are taken to an island, and then their population triples every 8 months. How many animals will there be in 4 years? $f(x) = 15 \cdot 3^x$; 10,935 animals
- **66.** The population of a city this year is 34,500. e population is expected to grow by 3% each year. What will be the population of the city in 12 years? about 49,189

Lessons 7-6

Evaluate each function over the domain $\{-1, 0, 1, 2\}$. As the values of the domain increase, do the values of the function increase or decrease?

67.
$$y = 8x$$

exponential growth;
growth factor = 8

68.
$$y = \frac{3}{4} \cdot 2^x$$
 exponential growth; growth factor = 2

69.
$$y = 9 \cdot \left(\frac{1}{2}\right)^x$$
 exponential decay; decay factor $= \frac{1}{2}$

70.
$$y = 4 \cdot 9^x$$

exponential growth;
growth factor = 9

71.
$$y = 0.65^x$$
 exponential decay; decay factor = 0.65

72.
$$y = 3 \cdot 1.5x$$

exponential growth;
growth factor = 1.5

73.
$$y = \frac{2}{5} \cdot \left(\frac{1}{4}\right)^x$$
 exponential decay; decay factor $=\frac{1}{4}$

74.
$$y = 0.1 \cdot 0.9^x$$
 exponential decay;

75.
$$y = 0.7 \cdot 3.3^x$$

exponential growth;
growth factor = 3.3

decay factor = 0.9

Extra Practice (continued)

Chapter 7

Write an exponential function to model each situation. Find each amount after the specified time.

- **76.** S\$200 principal, 4% compounded annually for 5 years $y = 200(1.04)^x$; \$243.33
- 77. \$1000 principal, 3.6% compounded monthly for 10 years $y = 1000(1.003)^x$; \$1432.56
- **78.** \$3000 investment, 8% loss each year for 3 years $y = 3000(0.92)^x$; \$2336.06

Find the balance in each account.

- **79.** You deposit \$2500 in a savings account with 3% interest compounded annually. What is the balance in the account after 6 years? **\$2985.13**
- **80.** You deposit \$750 in an account with 7% interest compounded semiannually. What is the balance in the account after 4 years? \$987.61
- **81.** You deposit \$520 in an account with 4% interest compounded monthly. What is the balance in the account after 5 years? **\$634.92**

Lessons 7-8

Determine whether the sequence is a geometric sequence. Explain.

- **82.** 2, 10, 50, 250, ...

 There is a common ratio, *r* = 5. So, the sequence is geometric.
- 85. -1, 7, -49, 343, ... There is a common ratio, r = -7. So, the sequence is geometric.
- 83. 7, 15, 23, 31, ...

 There is no common ratio.

 So, the sequence is not geometric.
- 86. 48, 24, 12, 6, ... There is a common ratio, $r = \frac{1}{2}$. So, the sequence is geometric.

Write the explicit formula for each geometric sequence.

88. 2, 6, 18, 54, ...
$$a_n = 2 \cdot 3^{n-1}$$

91.
$$\frac{1}{100}$$
, $\frac{1}{10}$, 1, 10, ...
$$a_n = \frac{1}{100} \cdot 10^{n-1}$$

89. 4, -16, 64, -256, ...
$$a_n = 4 \cdot (-4)^{n-1}$$

92.
$$-5, 5, -5, 5, ...$$

$$a_n = -5 \cdot (-1)^{n-1}$$

90. 200, 100, 50, 25, ...
$$a_n = 200 \cdot \left(\frac{1}{2}\right)^{n-1}$$

93. 6, 2,
$$\frac{2}{3}$$
, $\frac{2}{9}$, ...
$$a_n = 6 \cdot \left(\frac{1}{3}\right)^{n-1}$$