\qquad
\qquad
\qquad

Extra Practice

Chapter 7

Lessons 7-1 to 7-4

Simplify each expression. Use only positive exponents.

1. $(2 t)^{-6} \frac{1}{64 t^{6}}$
2. $5 m^{5} m^{-8} \frac{5}{m^{3}}$
3. $(4.5)^{4}(4.5)^{-2}(4.5)^{2}$
4. $\left(m^{7} t^{-5}\right)^{2} \frac{m^{14}}{t^{10}}$
5. $\left(x^{2} n^{4}\right)\left(n^{-8}\right) \frac{x^{2}}{n^{4}}$
6. $\left(w^{-2} j^{-4}\right)^{-3}\left(j^{7} j^{3}\right) w^{6} j^{22}$
7. $\left(t^{6}\right)^{3}(m)^{2} t^{18} m^{2}$
8. $\left(3 n^{4}\right)^{2} 9 n^{8}$
9. $\frac{r^{5}}{g^{-3}} r^{5} g^{3}$
10. $\frac{1}{a^{-4}} a^{4}$
11. $\frac{w^{7}}{w^{-6}} w^{13}$
12. $\frac{6}{t^{-4}} 6 t^{4}$
13. $\frac{a^{2} b^{-7} c^{4}}{a^{5} b^{3} c^{-2}} \frac{c^{6}}{a^{3} b^{10}}$
14. $\frac{\left(2 t^{5}\right)^{3}}{4 t^{8} t^{-1}} 2 t^{8}$
15. $\left(\frac{a^{6}}{a^{7}}\right)^{-3} a^{3}$
16. $\left(\frac{c^{5} c^{-3}}{c^{-4}}\right)^{-2} \frac{1}{c^{12}}$
17. $\left(\frac{4 x^{3}}{8 x^{-2}}\right)^{0} 1$
18. $\left(\frac{y^{-3}}{y^{3}}\right)^{2} \frac{1}{y^{12}}$

Evaluate each expression for $m=2, t=-3, w=4$, and $z=0$.
19. $t^{m} 9$
20. $t^{-m} \frac{1}{9}$
21. $(w \cdot t)^{m} 144$
22. $w^{m} \cdot t^{m} 144$
23. $\left(w^{z}\right)^{m} 1$
24. $w^{m} w^{z} 16$
25. $z^{-t}\left(m^{t}\right)^{z} 0$
26. $w^{-t} t^{-\frac{64}{27}}$
27. $\left(\frac{t^{w}}{m^{t}}\right)^{z} 1$
28. Suppose an investment doubles in value every 5 years. This is year the investment is worth $\$ 12,480$. How much will it be worth 10 years from now? How much was it worth 5 years ago? \$49,920; \$6240
29. What is the volume of a cube with a side length of $\frac{4}{5} \mathrm{~m}$? $\frac{64}{125} \mathrm{~m}^{3}$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 7

30. A light-year is the distance light travels in one year. If the speed of light is about $3 \times 10^{5} \mathrm{~km} / \mathrm{s}$, how long is a light-year in kilometers? (Use 365 days for the length of a year). about $9.5 \times 10^{12} \mathrm{~km}$
31. The radius of Earth is approximately $6.4 \times 10^{6} \mathrm{~m}$. Use the formula $V=\frac{4}{3} \pi r^{3}$ to find the volume of Earth. about $1.1 \times 10^{21} \mathrm{~m}^{3}$
32. A spherical cell has a radius of $2.75 \times 10^{-6} \mathrm{~m}$. Use the formula for the surface area of a sphere $S . A .=4 \pi r^{2}$ to find the surface area of a cell. about $9.5 \times 10^{-11} \mathrm{~m}^{2}$
33. The speed of sound is approximately $1.2 \times 10^{3} \mathrm{~km} / \mathrm{h}$. How long does it take for sound to travel $7.2 \times 10^{2} \mathrm{~km}$? Write your answer in minutes. 36 min

Lessons 7-5

Find the value of each expression.
34. $\sqrt[2]{64} 8$
35. $\sqrt[3]{343} 7$
36. $\sqrt[4]{16} \quad 2$
37. $\sqrt[3]{125} 5$
38. $\sqrt[4]{256} 4$
39. $\sqrt[2]{144} 12$

Write each expression in radical form.
40. $b^{\frac{3}{4}} \sqrt[4]{b^{3}}$
41. $16 a^{\frac{2}{3}} 16 \sqrt[3]{a^{2}}$
42. $(4 c)^{\frac{1}{2}} \quad 2 \sqrt{c}$
43. $y^{\frac{1}{4}} 4 \sqrt{y}$
44. $(32 b)^{\frac{2}{3}} 8 \sqrt[3]{2 b^{2}}$
45. $12 a^{\frac{3}{4}} 12 \sqrt[4]{a^{3}}$

Write each expression in exponential form.

46. $\sqrt[4]{n^{3}} n^{\frac{3}{4}}$
47. $\sqrt[3]{27 m^{2}} 3 m^{\frac{2}{3}}$
48. $\sqrt{81 z} 9 z^{\frac{1}{2}}$
49. $\sqrt[3]{128 y^{2}} 4 \cdot 2^{\frac{1}{3}} \cdot y^{\frac{2}{3}}$
50. $\sqrt{(5 b)^{4}} 25 b^{2}$
51. $\sqrt[4]{(16 x)^{2}} 4 x^{\frac{1}{2}}$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 7

Lessons 7-6

Evaluate each function over the domain $\{-1,0,1,2\}$. As the values of the domain increase, do the values of the function increase or decrease?
52. $y=3^{x}$
$\left\{\frac{1}{3}, 1,3,9\right\}$; increase
55. $y=\left(\frac{1}{2}\right) \cdot 3^{x}$
$\left\{\frac{1}{6}, \frac{1}{2}, \frac{3}{2}, \frac{9}{2}\right\} ;$ increase
58. $y=3 \cdot\left(\frac{1}{5}\right)^{x}$
$\left\{15,3, \frac{3}{5}, \frac{3}{25}\right\}$; decrease
61. $y=(0.8)^{x}$
$\left\{\frac{5}{4}, 1, \frac{4}{5}, \frac{16}{25}\right\}$; decrease
Write and solve an exponential equation to answer each question.
64. Suppose an investment of $\$ 5,000$ doubles every 12 years. How much is the investment worth after 36 years? After 48 years? $f(x)=5000 \cdot 2^{x} ; \$ 40,000 ; \$ 80,000$
65. Suppose 15 animals are taken to an island, and then their population triples every 8 months. How many animals will there be in 4 years? $f(x)=15 \cdot 3^{x} ; 10,935$ animals
66. The population of a city this year is 34,500 . e population is expected to grow by 3% each year. What will be the population of the city in 12 years? about 49,189

Lessons 7-6

Evaluate each function over the domain $\{-1,0,1,2\}$. As the values of the domain increase, do the values of the function increase or decrease?
67. $y=8 x$
exponential growth;
growth factor $=8$
70. $y=4 \cdot 9^{x}$
exponential growth; growth factor $=9$
73. $y=\frac{2}{5} \cdot\left(\frac{1}{4}\right)^{x}$ exponential decay; decay factor $=\frac{1}{4}$
68. $y=\frac{3}{4} \cdot 2^{x}$ exponential growth; growth factor $=2$
71. $y=0.65^{x}$
exponential decay; decay factor $=0.65$
74. $y=0.1 \cdot 0.9^{x}$
exponential decay; decay factor $=0.9$
69. $y=9 \cdot\left(\frac{1}{2}\right)^{x}$ exponential decay; decay factor $=\frac{1}{2}$
72. $y=3 \cdot 1.5 x$
exponential growth; growth factor $=1.5$
75. $y=0.7 \cdot 3.3^{x}$
exponential growth; growth factor $=3.3$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 7

Write an exponential function to model each situation. Find each amount after the specified time.
76. $\mathrm{S} \$ 200$ principal, 4% compounded annually for 5 years $y=200(1.04)^{x} ; \$ 243.33$
77. $\$ 1000$ principal, 3.6% compounded monthly for 10 years $\quad y=1000(1.003)^{x}$; $\$ 1432.56$
78. $\$ 3000$ investment, 8% loss each year for 3 years $y=3000(0.92)^{x} ; \$ 2336.06$

Find the balance in each account.

79. You deposit $\$ 2500$ in a savings account with 3% interest compounded annually. What is the balance in the account after 6 years? $\$ 2985.13$
80. You deposit $\$ 750$ in an account with 7% interest compounded semiannually.

What is the balance in the account after 4 years? \$987.61
81. You deposit $\$ 520$ in an account with 4% interest compounded monthly. What is the balance in the account after 5 years? \$634.92

Lessons 7-8

Determine whether the sequence is a geometric sequence. Explain.
82. 2, 10, 50, 250, ...

There is a common ratio, $r=5$. So, the sequence is geometric.
85. $-1,7,-49,343, \ldots$

There is a common ratio, $r=-7$. So, the sequence is geometric.
88. $2,6,18,54, \ldots$
$a_{n}=2 \cdot 3^{n-1}$
89. $4,-16,64,-256, \ldots$
$a_{n}=4 \cdot(-4)^{n-1}$
91. $\frac{1}{100}, \frac{1}{10}, 1,10, \ldots, ~ \begin{aligned} & a_{n}=\frac{1}{100} \cdot 10^{n-1}\end{aligned}$
90. $200,100,50,25, \ldots$
$a_{n}=200 \cdot\left(\frac{1}{2}\right)^{n-1}$
93. $6,2, \frac{2}{3}, \frac{2}{9}, \ldots$
$a_{n}=6 \cdot\left(\frac{1}{3}\right)^{n-1}$
83. $7,15,23,31, \ldots$

There is no common ratio.
So, the sequence is not geometric.
86. $48,24,12,6, \ldots$

There is a common ratio, $r=\frac{1}{2}$. So, the sequence is geometric.
84. 3, 12, 48, 192, ...

There is a common ratio, $r=4$. So, the sequence is geometric.
87. $17,15,13,11, \ldots$

There is no common ratio. So, the sequence is not geometric.

