$f(x) = 2\sqrt{x-1} + 3$

16.

Because h = 1 and k = 3, shift the graph of $f(x) = 2\sqrt{x}$ right 1 unit and up 3 units.

The domain is $x \ge 1$ and the range is $f(x) \ge 3$.

$$y = (x+1)^{1/2} + 8 = \sqrt{x+1} + 8$$

17.

Because h = -1 and k = 8, shift the graph of $y = x^{1/2}$ left 1 unit and up 8 units.

The domain is $x \ge -1$ and the range is $y \ge 8$.

 $y = -4\sqrt{x-5} + 1$

18.

Because h = 5 and k = 1, shift the graph of $y = -4\sqrt{x}$ right 5 units and up 1 unit.

The domain is $x \ge 5$ and the range is $y \le 1$.

$$y = \frac{3}{4}x^{1/3} - 1 = \frac{3}{4}\sqrt[3]{x} - 1$$

19.

Because h = 0 and k = -1, shift the graph of $y = \frac{3}{4}x^{1/3}$ down 1 unit.

$$y = -2\sqrt[3]{x+5} + 5$$

Because h = -5 and k = 5, shift the graph of $y = -2\sqrt[3]{x}$ left 5 units and up 5 units.

The domain and range are both all real numbers.

$$h(x) = -3\sqrt[3]{x+7} - 6$$

21.

Because h = -7 and k = -6, shift the graph of $h(x) = -3\sqrt[3]{x}$ left 7 units and down 6 units.

 $y = -\sqrt{x - 4} - 7$

22.

Because h = 4 and k = -7, shift the graph of $y = -\sqrt{x}$ right 4 units and down 7 units.

The domain is $x \ge 4$ and the range is $y \le -7$.

 $g(x) = -\frac{1}{3}\sqrt[3]{x} - 6$

23.

Because h = 0 and k = -6 shift the graph of $g(x) = \frac{1}{3}\sqrt[3]{x}$ down 6 units.

24.

Because h = 4 and k = 5, shift the graph of $y = 4\sqrt[3]{x}$ right 4 units and up 5 units.